

# **ENERGETIQUE**

# Chapitre 11

## **EXERCICES**

Feuille n°6

# Puissance mécanique et électrique

#### **EXERCICE 1**

Un homme pousse une voiture avec une force F=300~N; on constate que la  $\vec{F}$  voiture se déplace à la vitesse constante  $V=0.8~m\cdot s^{-1}$ .

a) Calculer en W la puissance P développée par la force F de l'homme sur la voiture.

 $P = 240 \, W$ 

#### **EXERCICE 2**

Une voiture se déplace en ligne droite à la vitesse  $V=90~km\cdot h^{-1}$ . La surface « maître-couple » de la voiture est  $S=3~m^2$  et son coefficient de pénétration dans l'air vaut  $C_x=0.32$ .

a) Calculer en N la force R d'opposition au mouvement (résistance de l'air).

R = 361,2 N

**b)** Calculer en W la puissance perdue  $P_R$ .

 $P_{R} = 9030 \, W$ 

## **EXERCICE 3**

Un vérin exerce au point A une force  $\overrightarrow{F}$  sur un solide qui se déplace à la vitesse  $\overrightarrow{V}$ . On donne : F=247~daN et  $V=50~mm\cdot s^{-1}$ .



a) Calculer en W la puissance  $P_0$  développée par la force  $\overrightarrow{F}$  pour  $\beta = 0^{\circ}$ .

P = 123,5 W

**b)** Calculer en W la puissance  $P_{24}$  développée par la force  $\overrightarrow{F}$  pour  $\beta=24^\circ$  .

P = 112.8 W

c) Calculer en W la puissance  $P_{90}$  développée par la force  $\overrightarrow{F}$  pour  $\beta = 90^{\circ}$ .

P = 0 W

#### **EXERCICE 4**

Le rotor d'un moteur tourne à la vitesse  $\omega = 2.3 \ rad \cdot s^{-1}$  et fournit un couple  $C = 6 \ N \cdot m$ .

a) Calculer en W la puissance mécanique  $P_{m\acute{e}ca}$  disponible sur le rotor.

P = 13.8 W

**b)** Calculer en  $N \cdot m$  le couple disponible  $C_1$  si, à puissance constante, la vitesse chute de moitié.

 $C_1 = 12 \, W$ 

#### **EXERCICE 5**

Le rotor d'un moteur à courant continu tourne à la vitesse  $N_{\rm m}=2365~{\rm tr}\cdot{\rm min}^{-1}$  et fournit d'après le constructeur une puissance mécanique  $P_{\rm méca}=0.650~{\rm kW}$  .

a) Calculer en  $N\cdot m$  le couple moteur  $C_m$  .

 $C_m = 2.6 \cdot 10^{-3} \ N \cdot m$ 

### **EXERCICE 6**

Un résistor de résistance  $R=0.13~k\Omega$  est parcourue par un courant continu d'intensité i=1.7~A.

a) Calculer en  ${\cal W}$  la puissance  ${\cal P}_{{\scriptscriptstyle J}}$  dissipée par effet joule.

 $P_J = 375.7 W$ 

**b)** Calculer en J l'énergie calorifique E produite pour une heure de fonctionnement.

 $E = 1.35 \cdot 10^6 \ J$ 

c) Calculer en V la tension électrique  $U_{\scriptscriptstyle R}$  aux bornes du résistor.

 $U_R = 221 V$ 

Le résistor était placé dans 50 l de glycérine dont la température initiale était  $T_i=12~^{\circ}C$  .

**d)** Calculer en  ${}^{\circ}C$  la température finale  $T_f$  de l'eau (parois adiabatiques).

 $T_f = 20.85 \,{}^{\circ}C$ 

#### **EXERCICE 7**

Un moteur électrique à courant continu de tensions d'alimentation nominale  $U=24\,V$  a un rendement  $\eta_m=0.77$  lorsque sa vitesse de rotation est  $N=1320\,tr\cdot min^{-1}$ ; sous ces conditions on constate que l'intensité du courant le traversant est  $i=3,2\,A$ .

- a) Rappeler la fonction principale d'un moteur.
- b) Faire le diagramme SADT A-0 du moteur.
- c) Faire le schéma-bloc du moteur en y indiquant toutes les grandeurs électriques et mécaniques.
- **d)** Calculer en  $N \cdot m$  le couple moteur  $C_m$ .

 $C_m = 0.43 \ N \cdot m$ 

#### **EXERCICE 8**

On monte à la sortie du moteur de l'exercice précédent un réducteur à engrenage dont le rendement est  $\eta_R=0.89$  et le rapport de transmission est r=0.25.

- a) Donner la signification du mot "réducteur".
- b) Faire le schéma-bloc détaillé de l'installation.
- c) Calculer en  $N \cdot m$  le couple  $C_2$  disponible en sortie de réducteur.

 $C_2 = 1,52 N \cdot m$ 

**d)** Calculer en  $tr \cdot min^{-1}$  le vitesse de rotation  $N_2$  disponible en sortie de réducteur.

 $N_2 = 329 \, tr \cdot min^{-1}$ 

e) Faire le schéma-bloc encapsulé de l'installation.

#### **EXERCICE 9**

On monte sur la sortie du réducteur de l'exercice précédent un cylindre de diamètre  $d=60\ mm$  sur lequel s'enroule un câble au bout duquel est suspendue une masse m.

Le tout est placé sur terre, avec  $g = 10 \text{ m} \cdot \text{s}^{-2}$ .

- a) Faire un schéma (un dessin) qui explique la situation.
- b) Représenter sur le dessin à l'aide d'un vecteur le champ de pesanteur.
- c) Calculer en kg la masse maximale qu'est capable de lever l'installation.

 $m = 5.2 \, kg$ 

**d)** Calculer en  $m \cdot s^{-1}$  la vitesse de montée V de la masse maximale.

 $V = 1,035 \ m \cdot s^{-1}$ 

e) Calculer en s le temps  $\Delta t$  nécessaire pour que la masse parcourt la distance  $h = 750 \ mm$ .

 $\Delta t = 0,725 \text{ s}$ 

f) Calculer en J l'énergie potentielle de hauteur  $E_p$  prise par la masse.

 $E_{p} = 54,6 J$ 

g) Calculer en kWh l'énergie électrique qu'il faut investir pour réaliser la levée de la masse.

 $E = 15.5 \cdot 10^{-6} \text{ kWh}$